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Average stress in a Stokes suspension of disks
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Abstract

The ensemble-average velocity and pressure in an unbounded quasi-random suspension of disks (or

aligned cylinders) are calculated in terms of average multipoles allowing for the possibility of spatial non-

uniformities in the system. An expression for the stress due to the suspended particles is deduced from these

results. It is found that spatial non-uniformity can induce an antisymmetric component in this stress even

when no external couple acts on the particles. This component has the same order of magnitude as the term

responsible for the difference between the effective viscosity of the suspension and that of the pure fluid.

General considerations and a simple cell model suggest that the antisymmetric component will induce a

flow in the presence of gradients of the particle volume fraction or of the relative interphase velocity, for
example in a sedimenting suspension with a horizontally non-uniform particle distribution. While the

derivation assumes Stokes flow conditions for the local flow around the particles, the Reynolds number of

the mean macroscopic flow is unrestricted. In addition to illustrating the general nature of the particle

stress, this work is a necessary prerequisite for the development of a closed suspension model on the basis of

direct numerical simulations.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The derivation of a reliable averaged-equations model for disperse multiphase flow is an
important problem which, in spite of a significant research effort over several decades, is still far
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from a satisfactory solution. The chief and well-known difficulty is the closure of the equations
derived from the formal averaging of the exact microscopic formulation: the simplest closure
assumptions lead to models which turn out to be lacking not only in physical realism, but in
mathematical behavior as well.

One of the most promising ways to make progress toward this goal is to use direct numerical
simulations of the exact microscopic formulation to gain the insight necessary to close the
equations. The literature contains many instances of this approach. For example, Ladd (1990)
(see also Ladd and Verberg, 2001) and others (e.g. Brady and Bossis, 1985; Brady et al., 1988;
Chang and Powell, 1993; Mo and Sangani, 1994; Sangani and Mo, 1996) have calculated the
effective viscosity of suspensions of spheres, Spelt and Sangani (1997/1998) and Kang et al.
(1997) have derived models for bubbly liquids, Tsao and Koch (1995) and Sangani et al. (1996)
have studied gas–solid suspensions, Sundararajakumar et al. (1994) have calculated the effec-
tive transport properties of dispersions of disks, Martys et al. (1994) have studied the effec-
tive viscosity of Brinkman�s equation, Higdon and Ford (1996) and Clague and Phillips (1997)
have calculated the permeability of fibrous media. In all of these studies, as well as in many
others which we do not cite for brevity, the system is assumed to be essentially spatially uni-
form.

While these results represent a significant progress in our understanding of several facets of
disperse multiphase flows, they are not sufficient to construct a theory of sufficient generality to be
used in the presence of the significant spatial non-uniformities which naturally arise in disperse
systems, such as bubbles in fluidized beds, sedimenting fronts, kinematic shocks, high-vorticity
regions, and others. For example, in a homogeneous viscous suspension subject to simple shear,
the average particle velocity w is identical to the mixture velocity um, and therefore contributions
to the stress induced by a gradient of the slip velocity w� um, which would arise in more general
flows, cannot be identified. In a homogeneous settling suspension all gradients vanish and,
therefore, contributions to the interphase force analogous to the Fax�een force cannot be found.
Many similar examples could be cited: the point is that, for a computational approach to closure
to be fully successful, the closure problem itself must be posed in a general context and, in par-
ticular, avoiding the assumption of spatial uniformity.

These considerations have motivated our work on the proper definition of the mix-
ture pressure and the general structure of the average stress in disperse flows (Marchioro et al.,
1999; Prosperetti, 2003), and on the averaged description of Stokes suspensions of spheres
(Zhang and Prosperetti, 1997; Marchioro et al., 2000, 2001; Wang and Prosperetti, 2001;
Tanksley and Prosperetti, 2001). Among other results, we found that, in general, the average
stress tensor ceases to be symmetric even in the absence of couples acting on the particles, an
adequate description of the symmetric part of the stress tensor requires the introduction of
other effective viscosities in addition to the well-known Einstein one, the average interphase
force cannot be reduced to drag but contains several contributions, etc. In Tanksley and
Prosperetti (2001) we have presented an exact, if implicit, direct calculation of the average
stress in a suspension of spheres which clearly exhibits the structure of the stress tensor and
forms a useful basis for both analytical and numerical attempts at a closure of the averaged
equations.

The purpose of this paper is to present a similar calculation for the two-dimensional case of a
suspension of disks (or aligned cylinders). The motivations are several. In the first place, the
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technical details are somewhat simpler to follow, which renders the conclusion more transparent.
Secondly, by pointing out that essentially all the features encountered in the three-dimensional
case are also present here, one may better appreciate their universality and, at least qualitatively,
check the earlier calculation. Thirdly, the task of numerically deducing closure relations, that we
have begun in earlier papers (Marchioro et al., 2000, 2001; Wang and Prosperetti, 2001), is easier
in two dimensions and can therefore be brought to a more satisfactory degree of completion: the
results derived here are a necessary prerequisite for this latter task. In spite of the somewhat
limited physical relevance of the two-dimensional problem, this is an important point as it may be
expected that the general solution of the closure problem will be facilitated by the existence of
instances of specific cases in which accurate results are available. Finally, the present results also
provide a further explicit check of the definition of mixture pressure derived by formal means
in Marchioro et al. (1999).

In the limit of a spatially uniform suspension, with due account for the difference in space
dimensionality, our results agree with those presented in the well-known study by Batchelor
(1970). While the literature on suspensions is vast, very few papers address the situation of spatial
non-uniformity considered here. Feuillebois (1984) studied the case of vertical inhomogeneities,
but he was interested in deriving explicit corrections to the settling velocity for specific cases,
rather than formulating a general theory. While here we consider both phases, the work of
Lhuillier (1992) and Lhuillier and Nozi�eeres (1992) focused on the disperse phase and only con-
sidered weak inhomogeneities. In Marchioro and Prosperetti (1999) we studied heat conduction in
a non-uniform composite.

The dominant contributions to the new effects that we identify are of the same order as
those responsible for the difference between the effective viscosity of the suspension and the
viscosity of the pure fluid. Higher-order corrections are of the order of the ratio of the parti-
cle radius a, or the mean interparticle distance a=b1=2

D (with bD the particle volume fraction),
to the macroscopic length scale L. These higher-order terms may be considered as embody-
ing non-local corrections caused by particle–particle interactions and by the finite size of
the particles. The latter effects are similar in nature to the Fax�een term in the force on a
sphere. While small for a uniform system, all these terms may become appreciable in the
presence of non-zero gradients, such as near a sedimenting front, at the edge of the ‘‘clumps’’
of the suspended phase produced by inertial effects or convective currents (see e.g. Squires and
Eaton, 1991; Wang and Maxey, 1993), and others. Furthermore, these terms contain spatial
derivatives and, therefore, affect the short-scale behavior (in particular, well-posedness and
continuous dependence on the data) upon which the mathematical structure of the equations
depends.

As a final point, it may be noted that the results that follow are also applicable to a two-
dimensional porous medium, rather than a suspension, provided the particle velocity is set to zero.
This problem, which physically corresponds to flow through a bed of aligned fibers, has also been
studied in the past, notably by Howells (1974, 1998), Shaqfeh and Fredrickson (1990), Ghaddar
(1995), James and Davis (2001), and others.

The present derivation is based on a general solution of the two-dimensional Stokes equations
(given in Appendix A) patterned after the well-known Lamb solution for spheres. Several other
details of the calculation are given in Appendices A–D and, in a much expanded version, in a
document available from the author.



Fig. 1. A fundamental cell in a quasi-random suspension of disks.
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2. Ensemble averages for a non-uniform suspension

We consider an approximation to an unbounded two-dimensional suspension (or porous
medium) of disks (or aligned cylinders) consisting of the periodic repetition of a square cell of side
L and volume (area) V, into which N identical disks are randomly placed (see Fig. 1). 2 Neither
the parameter L nor the particle number N appear explicitly in the final result and (provided the
required averages converge) can then be taken arbitrarily large.

Let ya, a ¼ 1; 2; . . . ;N , be the coordinates of the disk centers in the fundamental cell distributed
according to a probability density PðNÞ � P ðy1; y2; . . . ; yNÞ normalized so that
2 If

result

here a
Z
dCNP ðNÞ ¼ N !; ð1Þ
in view of the identity of the disks. Here dCN ¼ d2y1 d2y2 � � �d2yN , and, for each variable, the
integration ranges over the entire cell V. In general, P will also depend on time, but the
dependence on this variable is non-essential and is omitted throughout the present paper.

For each configuration CN � fy1; y2; . . . ; yNg, the indicator function for the region occupied by
the disks is
the Fourier expansions that follow are generalized to include wave numbers of the reciprocal lattice, the present

s are also applicable to a fundamental cell in the shape of a parallelogram. This extension is not of great interest

s the specific nature of the cell disappears from the final results.
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vðx;NÞ ¼
XN
a¼1

Hða� jx� yajÞ; ð2Þ
where H is the Heaviside distribution, and a the common radius of the disks. The probability that
a point x be in the continuous phase (index C) is the continuous-phase volume fraction and is
given by
bCðxÞ ¼
1

N !

Z
dCNP ðNÞ½1� vðx;NÞ�; ð3Þ
the probability for the point x to be in the disperse phase (index D) is bD ¼ 1� bC.
With the assumption of inertialess (Stokes) flow, given a deterministic forcing agent, such as a

force applied to the particles, or an imposed shear, the behavior of each realization of the
ensemble is entirely determined by the instantaneous position of the particle centers. Thus, the
phase-ensemble average for the generic continuous-phase field f (such as pressure, velocity, etc.)
may be written as
bCðxÞhf iðxÞ ¼
1

N !

Z
dCNP ðNÞð1� vÞf ðx;NÞ: ð4Þ
If the field f is spatially periodic, its phase-ensemble average can be expanded in a Fourier series:
bCðxÞhf iðxÞ ¼ f0 þ
X
k6¼0

fk expð�ik � xÞ; ð5Þ
where the summation is over all wave numbers that are compatible with the dimensions of the cell
(excluding k ¼ 0, which is treated separately), and
f0 ¼
1

V

Z
d2xbCðxÞhf iðxÞ; fk ¼

1

V

Z
d2x expðik � xÞbCðxÞhf iðxÞ; ð6Þ
or, from (4),
f0 ¼
1

N !

Z
dCNP ðNÞ 1

V

Z
L

d2xf ðx;NÞ
� �

; ð7Þ

fk ¼
1

N !

Z
dCNP ðNÞ 1

V

Z
L

d2x expðik � xÞf ðx;NÞ
� �

; ð8Þ
where, due to the presence of the factor ð1� vÞ in the definition (4) of phase ensemble average, the
x-integration ranges only over the portion L of the fundamental cell occupied by the continuous
phase. Thus, the calculation of the Fourier coefficients f0 and fk requires the evaluation of inte-
grals of the form
F0ðNÞ ¼
Z
L

d2xf ðx;NÞ; ð9Þ

FkðNÞ ¼
Z
L

d2x expðik � xÞf ðx;NÞ: ð10Þ
For integrals of the second type we use the identity r2 expðik � xÞ ¼ �k2 expðik � xÞ and Green�s
theorem to write
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FkðNÞ ¼ 1

k2

Z
oL

dAn � ½ikf � $f � expðik � xÞ � 1

k2

Z
L

d2x expðik � xÞr2f ; ð11Þ
where the integration in the first term is over the entire boundary of the continuous phase (i.e., the
particle surface and the cell boundary) and the unit normal n is directed into the integration
domain (and hence out of the particles on the particle surfaces). The cell boundary actually gives a
vanishing contribution because of periodicity and this term reduces then to the sum of integrals
over the surface (perimeter) of the disks. Thus, upon setting x ¼ ya þ r in the integral over the
surface of the particle a, we may write
FkðNÞ ¼
XN
a¼1

expðik � yaÞLa
k �

1

k2

Z
L

d2x expðik � xÞr2f ; ð12Þ
where
La
k ¼

1

k2

Z
r¼a

dSan � ½ikf ðya þ rÞ � $rf ðya þ rÞ� expðik � rÞ: ð13Þ
The last term in (12) vanishes in the case of the pressure, which is harmonic and could be handled
by a repeated application of the same identity in the case of the velocity, which is biharmonic,
although, as shown in Section 5, a different approach is more convenient in this case. Integrals
of the form (9) can be treated similarly finding
F0ðNÞ ¼
XN
a¼1

La
0; ð14Þ
where
La
0 ¼ �

Z
r¼a

dSan � $rf�ðya þ rÞ: ð15Þ
in which f� is a particular solution of
r2f� ¼ f : ð16Þ
3. Microscopic velocity and pressure fields

We take the continuous phase to be an incompressible fluid and write its velocity in the form
uðx;NÞ ¼ U1ðxÞ þ vðx;NÞ; ð17Þ

where the first term is a deterministic imposed velocity and v, the disturbance due to the particles,
is periodic; for the situations of concern here, it is sufficient to take U1 in the form
U1ðxÞ ¼ U0 þ c � x; ð18Þ

in which U0 is a constant vector and c is a constant traceless two-tensor. Similarly, we write the
pressure field as
pðx;NÞ ¼ P1ðx;NÞ þ lqðx;NÞ; ð19Þ
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where l is the continuous-phase viscosity, $P1 is a constant, and q is periodic. If G is the
(constant) body force acting on the fluid, the Stokes equation is
$ � ð�pIþ sÞ þG ¼ 0; ð20Þ

in which I is the identity two-tensor and s the viscous stress. When this equation is integrated over
the continuous phase in the fundamental cell one finds, by the divergence theorem,
ðV� NvÞð�$P1 þGÞ �
XN
a¼1

Z
r¼a

dSan � ½�lqðya þ rÞIþ sðya þ rÞ� ¼ 0; ð21Þ
where v ¼ pa2 is the particle volume (area), the unit normal is directed into the continuous phase
as before, and the contribution of the cell boundary vanishes by the assumed periodicity of q and
v. On the other hand, the hydrodynamic force Fa on the ath particle is given by
Fa ¼
Z
r¼a

dSan � ½ � pðya þ rÞIþ sðya þ rÞ� ¼ �v$P1 þ
Z
r¼a

dSan � ð�lqIþ sÞ: ð22Þ
By using this relation the integrals in (21) can be eliminated to find
$P1 ¼ � 1

V

XN
a¼1

Fa þ 1

�
� Nv

V

�
G ¼ � 1

V

XN
a¼1

ðFa þ vGÞ þG; ð23Þ
which demonstrates the hydrostatic nature of the field P1. Up to an inconsequential constant,
thus we may take
P1 ¼ x �
 
� 1

V

XN
a¼1

fa þG

!
; ð24Þ
where fa ¼ Fa þ vG is the net fluid force on the particles, i.e., the hydrodynamic force plus
buoyancy. It has been shown by Sangani and Yao (1988) that, with P1 as given by (24), q and v
are indeed periodic. Upon substitution of this relation into the Stokes equation for an incom-
pressible fluid we have
�$qþr2v ¼ � 1

l
1

V

XN
a¼1

fa � CðNÞ; ð25Þ
where the vector C depends on the particle configuration but, for each configuration, is a con-
stant.
4. Average pressure

The average of the continuous-phase pressure is found by averaging (19):
hpi ¼ hP1i þ lhqi: ð26Þ

The second term is periodic and can be evaluated as in Section 2 while, for the first term, we use
the definition (4) of ensemble average directly.

According to (12) and (13), the calculation of hqi requires the knowledge of q in the neigh-
borhood of each particle. Thus, in the neighborhood of the generic particle a, we set
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~qq ¼ qþ C � x ¼ qþ C � ðya þ rÞ; ð27Þ

with which
�$~qqþr2v ¼ 0: ð28Þ

Due to the incompressibility of the continuous phase, ~qq is harmonic so that the last term in (12)
vanishes and it is sufficient to calculate the surface integrals La

k defined in (13); the same procedure
can be followed for the second term C � ðya þ rÞ. We write
~qq ¼ m
a2
X1
�1

qan; ð29Þ
where m is the kinematic viscosity of the continuous phase and
qan ¼ snðP a
n cos nhþ ePP a

n sin nhÞ; ð30Þ

a relation which also holds for n ¼ 0. Here and in the following we set
s ¼ r
a
; ð31Þ
where r is the radial distance from the particle center, and it proves convenient to measure the
angle h ¼ 0 from the direction of the vector k.

Some aspects of the calculation are dealt with in Appendix D and a considerably more detailed
document is available from the author; here we only present the final result, which is
bChpi ¼ x �
�
� N
V

�ffa þG

�
� lm

a2
S1ðnv�qq0Þ þ

1

2
vlm$ �

X1
l¼1

1

l!

�
� a2

2

�l�1

ð$�Þðl�1Þ

�
"
Slþ1 n$ðlÞ

r ðql þ s2lq�lÞ
� �

þ 4lða2r2Þ�1
Sl n$ðlÞ

r ðs2lq�lÞ
� �#

: ð32Þ
In this equation n is the local particle number density given by
nðxÞ ¼ 1

N !

Z
dCNP ðNÞ

XN
a¼1

dðx� yaÞ; ð33Þ
and overlines denote particle averages defined, for a quantity ga pertaining to the particle a as a
whole, by (see Zhang and Prosperetti, 1994, 1997; Prosperetti, 1998; Marchioro et al., 1999, 2000)
nðxÞ�ggðxÞ ¼ 1

N !

Z
dCNP ðNÞ

XN
a¼1

dðx
"

� yaÞgaðNÞ
#
; ð34Þ
�ffa is defined by
�ffa ¼
1

N

Z
d2xnðxÞ�ffðxÞ; ð35Þ
and represents therefore the average force over all the particles in the cell. The operator ðr2Þ�1

is the formal inverse of r2 in the space of functions periodic on the fundamental cell. Finally, the
Sl are differential operators defined by



3 O

leadin

A. Prosperetti / International Journal of Multiphase Flow 30 (2004) 1–26 9
Slða2r2Þ ¼
X1
k¼0

1

k!ðlþ kÞ!
a2r2

4

� �k

; ð36Þ
for an interpretation of these operators and some of their properties see Appendix C where, in
particular, it is shown that the particle volume fraction bD is given by
bD ¼ S1ðnvÞ ’ 1

�
þ a2

8
r2 þ � � �

�
ðnvÞ: ð37Þ
For a spatially uniform system all derivatives vanish, S1 reduces to the identity, and one finds
bD ¼ nv.

Note that, in (32), the differential operators $r only occur under the particle average overline
and operate on homogeneous polynomials of degree l in the local variable r=a for each particle;
hence, before averaging, both $ðlÞ

r ðqal þ s2lq�lÞ and $ðlÞ
r ðs2lp�lÞ are in fact constant tensors of de-

gree l. It can be shown that they are related to the moments of the hydrodynamic traction acting
on the surface of the particles (see Prosperetti, 2003). The other operator ð$�Þðl�1Þ

carrying no
subscript is the divergence operator repeated l� 1 times and acting on the field variable x, the
dependence on which arises from the particle average operation (34).

In single-phase incompressible fluid mechanics, the momentum equation is invariant if the
pressure p is replaced by p þ wðxÞ, where w is an arbitrary harmonic function, and the body force
G is replaced by Gþ $w. This gauge invariance property is physically significant as it embodies the
notion that, in an incompressible medium, the pressure is not a thermodynamic variable but has
only the role to enforce incompressibility. In Marchioro et al. (1999) it was argued that, in a two-
phase disperse system in which the two phases are individually incompressible, the quantity to be
identified as the mixture pressure, pm, should enjoy the same property; the reference cited contains
an extensive discussion justifying the procedure. Here we simply note that, in the present two-
dimensional system, the definition of pm given in Marchioro et al. (1999) should be modified to
pm ¼ bChpi þ
lm
a2

1

�
þ a2

8
r2

�
ðnv�qq0Þ

þ 1

4
a2$ � n

Z
r¼a

dSð�nÞp
� �

þ 1

2
a3$$ : n

Z
r¼a

dS nn� 1

2
I

� �
p

 !
þ � � � ð38Þ
It is readily verified that, with this definition, up to higher-order terms, pm is replaced by pm þ w if
the continuous-phase pressure inside the integrals is replaced by p þ w. 3 A simple calculation

shows that the first three terms of the form Slþ1ðn$ðlÞ
r ðql þ s2lq�lÞÞ in the right-hand side of (32)

coincide with those shown in (38). Thus, similarly to Tanksley and Prosperetti (2001), we are led
to identify the mixture pressure with the quantity
f course, the only regular periodic harmonic function is a constant, but the analysis of Marchioro et al. (1999)

g to (38) is general and does not presuppose a periodic system.
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pm ¼ bChpi þ
lm
a2

S1ðnv�qq0Þ �
1

2
vlm

X1
l¼1

1

l!

�
� a2

2

�l�1

Slþ1ð$�Þl
h
n $ðlÞ

r ðqal þ s2lq�lÞ
� �i

: ð39Þ
With this definition, (32) gives the following result for the mixture pressure:
pm ¼ x �
�
� N
V

�ffc þG

�
þ 2plmðr2Þ�1

X1
l¼1

1

ðl� 1Þ!

�
� a2

2

�l�1

Slð$�Þl n$ðlÞ
r ðs2lq�lÞ

� �
: ð40Þ
It should be noted that this result for a mixture-level quantity only contains decaying harmonics,
which represent the effect of the particles on the flow. In the next section it will be found that the
average volumetric flux––which is unquestionably a mixture quantity––also possesses this feature.
At a formal level, this circumstance strengthens the identification of (39) with the mixture pres-
sure.
5. Average velocities

We now turn to a calculation of the average velocities, starting with uDðxÞ, the velocity field of
the particle material (which, in general, will be different from the velocity of the particle center).
Since the particles are assumed rigid, when the point x is inside particle a we may write
uDðxÞ ¼ wa þXa � ðx� yaÞ; jx� yaj6 a; ð41Þ

where wa and Xa are the translational and angular velocity of the ath particle with respect to the
assumed reference frame. The phase-ensemble average of the disperse-phase velocity uD is defined
by a relation similar to (4), namely
bDhuDiðxÞ ¼
1

N !

Z
dCNPðNÞvðx;NÞuDðx;NÞ: ð42Þ
Note that, from (17), the no-slip condition at the particle surface requires that
vðya þ rÞ ¼ wa
0 � c � rþXa � r; ð43Þ
where
wa
0 ¼ wa �U1ðyaÞ: ð44Þ
Thus, for v to be periodic, wa
0 must be the same for all the images of each a particle in all the cells

(of course, the two w0 corresponding to different particles in the same cell are unrelated). We thus
conclude that uD cannot be periodic, although uD �U1ðxÞ is, and can therefore be expanded in
a Fourier series:
bDðxÞðhuDi �U1Þ ¼ u0 þ
X
k6¼0

uk expð�ik � xÞ; ð45Þ
where
u0 ¼
1

V

Z
d2xbDðxÞðhuDi �U1Þ; uk ¼

1

V

Z
d2x expðik � xÞbDðxÞðhuDi �U1Þ; ð46Þ
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or, from (42),
u0 ¼
1

N !

Z
dCNP ðNÞ 1

V

Z
d2xvðuD

�
�U1Þ

�
; ð47Þ

uk ¼
1

N !

Z
dCNP ðNÞ 1

V

Z
d2xv expðik � xÞðuD

�
�U1Þ

�
: ð48Þ
It is shown in Appendix D that the final result is
bDhuDi ¼ bDU1 þS1ða2r2ÞðnvwÞ þ a2S2ða2r2Þ
h
$� ðnvXÞ � c � $ðvnÞ

i
: ð49Þ
For a spatially homogeneous system this relation simply gives huDi ¼ w. The result (49) shows
however that, in general, the ensemble average velocity of the particle material differs from the
average translational velocity of the particle centers w (see also Lhuillier, 1992; Zhang and
Prosperetti, 1994).

The mixture velocity, or total volumetric flux, is defined by
um ¼ bChuCi þ bDhuDi: ð50Þ
The contribution of the disperse phase was evaluated in (49). For the continuous phase, we use the
Stokes equation (25) to express r2v in the last term of (12) to find
VkðNÞ �
Z
L

d2x expðik � xÞvðx;NÞ

¼ 1

k2
XN
a¼1

expðik � yaÞ
Z
r¼a

dSa iðn � kÞv½
�

� ðn � $Þv� expðik � rÞ
�
� 1

k2

Z
L

d2x expðik � xÞ$q:
ð51Þ
Since q is harmonic, $q also is and the last integral can be treated as done before in Section 4. The
first term in the first integral can readily be evaluated by using the boundary condition (43) while,
for the second one, we use the representation of the velocity field given in Appendix A.

Some details of the calculation are given in Appendix D; here we simply quote the final result,
which is
um ¼ u1�2pma2ðr2Þ�1ðIr2�$$Þ �
X1
l¼1

1

ðl�1Þ!

�
�a2

2

�l�1

ð$x�Þl�1

� ðl
�

þ1ÞSlþ1

�
n$ðlÞ

r ðs2l/�lÞ
�
þ ða2r2Þ�1

Sl

�
�1

4
Slþ1

�
n$ðlÞ

r ðs2lq�lÞ
�
þ2pm

�
n$rðs2/�1Þ

�
0

þ2p
m
a2
ðr2Þ�1

�
n$rðs2q�1Þ

�
0
� 1

2l
ðr2Þ�1$�S1ðnLÞ; ð52Þ
where La is the hydrodynamic couple acting on the ath particle.
It may be noted that um is a mixture quantity, just as the mixture pressure previously defined in

(40): it is noteworthy that the results for both quantities share the property of containing only
decaying harmonics.
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6. Mixture momentum balance

For a pure fluid, in the absence of inertia, the combination �$p þ lr2u equals the negative of
the body force. In a mixture one would expect to find, in addition to the latter, the divergence of a
term related to the fluid-particle interaction, to which we may refer as the particle stress. This
quantity is expected to appear in the form of a divergence because, being an internal force of the
system, its integration over a finite volume must reduce to a boundary contribution. We are thus
led to consider the combination �$pm þ lr2um, with pm given by (40) and um by (52). A simple
calculation shows that
�$pm þ lr2um ¼ �G� 2plmS1
�
n$rðs2q�1Þ

�
� $ � S� $� 1

2
S1ðnLÞ

�
þ $� ðU/ þUpÞ

�
;

ð53Þ

where
S ¼ 2plm
X1
l¼2

1

ðl� 1Þ!

�
� a2

2

�l�1

Slð$�Þðl�2Þ
�
n$ðlÞ

r ðs2lq�lÞ
�
; ð54Þ

U/ ¼ �2lmv
X1
l¼1

lþ 1

ðl� 1Þ!

�
� a2

2

�l�1

Slþ1ð$�Þðl�1Þ
�
n$ðlÞ

r ðs2l/�lÞ
�
; ð55Þ

Up ¼ 1

2
lmv

X1
l¼1

1

ðl� 1Þ!

�
� a2

2

�l�1

Slþ1ð$�Þðl�1Þ
�
n$ðlÞ

r ðs2lq�lÞ
�
: ð56Þ
It may be recalled that, as observed earlier after Eq. (37), the differentiated terms with an overbar
appearing in these definitions are actually constants related to the average force multipoles on the
particles.

We now examine the quantities (54)–(56) in turn.
From the expression for the velocity field given in Appendix A, it is easy to show that the

hydrodynamic force equals
Fa ¼ �vG� 2plm$rðs2qa�1Þ; ð57Þ
and, therefore,
Gþ 2plmS1

�
n$rðs2q�1Þ

�
¼ bCG�S1ðnFÞ ¼ bCG� 1

v

Z
jrj6 a

d2rnðxþ rÞFðxþ rÞ; ð58Þ
where we have used (37) and the representation (C.4) of the operator S1. In particular, if the
particle inertia is unimportant, the hydrodynamic force must balance the external applied force
Fe and, when the latter is the same for all the particles,
Gþ 2plmS1 n$rðs2q�1Þ
� �

¼ bCGþ Fe

v
bD: ð59Þ
Thus, the combination of these two terms gives the correct force per unit volume acting locally
on the mixture of the two phases.
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The definition (54) of the two-tensor S shows that the two free tensorial indices are $r$r under
the particle-average sign: it follows that this tensor is symmetric and traceless, since s2lq�l is
harmonic. In a spatially uniform system, the summation (54) reduces to the first term S2 since all
others are differentiated at least once with respect to the field variable x; as Eq. (C.5) shows, in this
case, S2 simply equals 1

2
. Thus we conclude that, for a spatially uniform system,
S ¼ � p
2
a2lmn$$ðs4q�2Þ: ð60Þ
But the quantity in the right-hand side is readily shown to be just the average stresslet acting
on the particles which, in two dimensions, is defined by
1

2

Z
r¼a

dS xirjk þ xjrik � dijx‘rk‘

	 

nk ¼ � p

2
a2lmoiojðs4q�2Þ; ð61Þ
we thus recover the well-known result given in Batchelor (1970).
The last group of terms in the momentum balance (53) constitutes the antisymmetric part of the

particle stress. The first term, L, is the mean hydrodynamic couple per unit volume acting on the
particles:
1

2
S1ðnLÞ ¼

1

2v

Z
jrj6 a

d2rnðxþ rÞLðxþ rÞ; ð62Þ
where, again, the representation (C.4) of the operator S1 has been used. If the integral is
approximated by 1

2
vnðxÞLðxÞ, which is permissible in a uniform suspension, we recover another

result in Batchelor (1970).
In the absence of inertia, whenever the particles are couple free, the antisymmetric contribution

(62) to the particle stress vanishes. However, unlike the spatially uniform case, this fact does not
automatically ensure symmetry of the particle stress tensor as the last two terms, U/ and Up, can
also induce an antisymmetric contribution in the presence of spatial non-uniformities. If their
expressions (55) and (56) are truncated to the first term, and S2 is approximated by its leading
term 1

2
, we have
Up þU/ ¼ 1

4
lmv
h
n$rðs2p�1 � 8/�1Þ

i
¼ 1

4
na2
Z
r¼a

dSðI� nnÞ � s: ð63Þ
To leading order, therefore, this term is proportional to the average contribution of the tangential
traction to the hydrodynamic force on the particle. At low Reynolds numbers, the tangential and
normal tractions contribute similarly to this force and, therefore, the integral in (63) may be
estimated to be of the order of the hydrodynamic force. As this force may be expected to be
proportional to the relative velocity multiplied by a function of the volume fraction, we conclude
that this term will influence the mixture momentum in the presence of non-uniformities in either
one of these quantities. Since a force (per unit length) acting on the particles induces a relative
interphase velocity Du � F =l, (an estimate which is confirmed by the results of the next section),
in order of magnitude, we have $� $� ðUp þU/Þ � bDlDu=L

2, which is comparable to
ðleff � lÞr2um, where leff is the effective viscosity of the suspension.
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Eq. (53) is the momentum balance for the suspension. Upon equating the particle average of
(57) to the average external force applied to the particles, Fe, one finds the momentum equation
for the particle phase:
Fe ¼ �vG� 2plm$rðs2qa�1Þ: ð64Þ
A similar procedure applied to the average couple acting on the particles gives the angular
momentum equation. As shown in several papers (e.g. Zhang and Prosperetti, 1994, 1997;
Marchioro et al., 1999, 2000), averaging of the total mass and particle number conservation
relations gives
$ � um ¼ 0;
on
ot

þ $ � ðnwÞ ¼ 0: ð65Þ
Provided closure relations for the right-hand sides of (54)–(56), and (64) can be formulated, Eqs.
(53), (64), and (65) constitute a complete ‘‘two-fluid’’ model of the suspension. As shown in
Marchioro et al. (2001) and Wang and Prosperetti (2001), direct numerical simulation is a
powerful tool for the systematic development of such closure relations; the results presented in
this paper are a necessary basis for this task.
7. A cell model

The main purposes of this work were, first, to elucidate the nature of the stress in a suspension
of disks, and, second, to prepare the ground for a numerical treatment similar to that provided for
a suspension of spheres in our earlier papers (Marchioro et al., 2000, 2001; Wang and Prosperetti,
2001). However, in conclusion, it may be of some interest to use the previous analysis to
implement a simple cell model. The limitations of such models are well known, and the reason to
develop one here is only to estimate some of the coefficients that would arise in a final closed
description of a two-dimensional suspension. It may be noted that an effective medium approx-
imation might be more accurate (see e.g. Spelt et al., 2001). However, its application requires that
the form of the averaged equations be known and, furthermore, that it be possible to solve them in
the clear-fluid zone surrounding the ‘‘test’’ particle. While these two conditions are easily met for
a spatially uniform system, they clearly are not in the present case.

The results of the previous section are expressed as series the terms of which contain spatial
derivatives of increasingly higher order. In order to preserve the mathematical nature of the
standard equations of fluid mechanics, we retain only terms contributing at most second-order
derivatives of the velocity to the final result and also, for simplicity, neglect the body force G on
the fluid and consider couple-free and inertialess particles.

To construct the model, we consider a particle immersed in Stokes flow in a cylindrical region
of clear fluid of radius R chosen so that ðpa2=pR2Þ ¼ bD, the volume fraction of the suspension.
The particle is in motion with velocity w and rotates with angular velocity X and we require that,
at the surface of the region of radius R, the velocity equal
U ¼ um þ ðr � $Þum þ 1

2
ðrr : $$Þum; ð66Þ



Fig. 2. Normalized effective viscosity according to the cell model of Section 7.
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where um and its gradients are evaluated at the position occupied by the center of the particle.
From the solution of the Stokes equation satisfying (66) one can calculate the various quantities

introduced in the previous section. The symmetric part of the stress is found to be
4 T

incide
S ¼ ½leffðbDÞ � l�ð$um þ $uTmÞ; ð67Þ

where the effective viscosity is given by
leff

l
¼ 1þ 2

1þ bD þ b2
D

ð1� bDÞ
3

nv: ð68Þ
In particular, for bD ! 0, one recovers the Einstein viscosity correction for the two-dimensional
case, leff=l ¼ 1þ 2nv, which is a known result (see e.g. Belzons et al., 1981; Brady, 1984). 4 A
graph of leff=l as given by (68) is shown in Fig. 2. Dodd et al. (1995) have calculated numerically
in two different ways the effective viscosity of a suspension of discs and a comparison with some of
their results with the present ones is shown in Table 1. It is seen that the agreement is reasonable
up to about 10–15%, after which (68) increasingly overestimates the effective viscosity.

The simple implementation of the cell model used here does not give rise to additional terms in
the right-hand side of (67) that were found necessary to reproduce the direct numerical simula-
tions of Marchioro et al. (2001). Such terms would be proportional to the symmetric parts of
$ðw� umÞ and ðw� umÞ$bD and would thus introduce other ‘‘viscosities’’ expressing the resis-
tance of the mixture to the rate of deformation of its microstructure.

From the requirement (64) that the external force balance the hydrodynamic force, we find
Fe ¼ � 4pl
MðbDÞ

ðum � wÞ � lv
ð1þ bDÞMðbDÞ

r2um; ð69Þ
he dilute limit result can be derived directly with no recourse to the cell model by identifying the velocity field

nt on the particle with um.



Table 1

Comparison between the effective viscosity given by (68) and the results found by two different methods of Dodd et al.

(1995)

bD leff=l

Present Dodd et al. I Dodd et al. II

0.05 1.123 1.13 –

0.10 1.305 1.28 –

0.15 1.573 1.40 1.4

0.20 1.969 1.67 –

0.30 3.431 2.27 2.2
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where the mobility M is given by
M ¼ � 1

2
logbD � 1� bD

1þ bD

: ð70Þ
The second term in (69) is analogous to the Fax�een contribution to the force on a sphere placed in a
non-uniform Stokes flow. Howells (1974, 1998) derived an asymptotic expression for the mobility
of a spatially uniform random arrangement of discs:
M � 1

2
logM þ c� 0:470

M
þOðM�2Þ ¼ � 1

2
log bD; ð71Þ
where c is Euler�s constant. The two results agree to leading order, M ’ � 1
2
log bD. A comparison

beyond this limit can be carried out numerically, but the series (71) can only be used for large M ,
which implies a very small volume fraction given that bD � expð�2MÞ. For example, for
bD ¼ 3:21� 10�3, from (71), M has the relatively small value of 3.00, while (70) gives M ¼ 1:88. It
can be concluded that the two results diverge rapidly from each other as soon as terms beyond the
first one become important. As bD ! 0, M diverges, which is a manifestation of the so-called
Stokes paradox of two-dimensional Stokes flow. For force-free particles, (69) gives
w ¼ um þ a2

4ð1þ bDÞ
r2um; ð72Þ
which shows that, as mentioned in Section 1, the average particle velocity equals the mixture
velocity in the case of uniform shear.

The balance of the hydrodynamic and external applied couples requires that
Le ¼ 4lv
X� 1

2
$� um

MR

; ð73Þ
where the rotational mobility MR is found to be given by
MR ¼ 1� bD: ð74Þ

This simple result is found to provide a very good fit to the numerical calculations of Dodd et al.
(1995), from which it differs by less than 10% over the range 0%6 bD 6 60%. Again, (69) and (73)
do not include several other terms, such as ð$um þ $uTmÞ � $bD, ½ðw� umÞ � $�$bD, etc. that were
found in Marchioro et al. (2001).
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The components of the antisymmetric stress are
U/ ¼ lvn
ð1þ bDÞM

ðum � wÞ; Up ¼ � 1

2

lvn
M

ðum � wÞ; ð75Þ
both of which also vanish in the dilute limit. Additional terms that might arise here, similar to
those mentioned in connection with (69), would give rise to higher derivatives in the momentum
equation and, therefore, would not contribute to the final result in the present approximation.
Furthermore, by using (69) and truncating the result so as to retain only second-order derivatives,
we have
1

v

Z
r6 a

d2xnðxþ rÞFðxþ rÞ ’ 1

�
þ a2

8
r2

�
½nðxÞFðxÞ�

’ 4pln
M

ðum � wÞ þ l
bD

ð1þ bDÞM
r2um þr2 bD

2M
ðum

�
� wÞ

�
: ð76Þ
Upon combining these contributions, and again neglecting terms with derivatives beyond the
second order and external couples, Eq. (53) becomes
�$pm þ $ � ½leffð$um þ $uTmÞ� þ l$� $� bD

2M
1� bD

1þ bD

ðum
�

� wÞ
�
� 4pln

M
ðum � wÞ

� l
bD

ð1þ bDÞM
r2um � lr2 bD

2M
ðum

�
� wÞ

�
¼ 0: ð77Þ
In the special case in which the force acting on each particle is the same, Fe, as for example in the
case of sedimentation, the right-hand side of (76) reduces to �ðbD=vÞFe and, again omitting
higher-order derivatives, this equation simplifies to the form
�$pm þ $ � ½leffð$um þ $uTmÞ� �
1

8p
$� $� bD

1� bD

1þ bD

Fe

� �
þ bD

v
Fe ¼ 0: ð78Þ
Upon taking the vector product of this relation with Fe, one finds
Fe �
�
� $pm þ $ � ½leffð$um þ $uTmÞ� �

1

8p
ðFe � $Þ$ bD

1� bD

1þ bD

� ��
¼ 0: ð79Þ
It is evident here that, if ðFe � $Þ$bD has a non-zero component perpendicular to Fe, at least one of
the first two terms in the square brackets must also have a non-zero component in the same
direction, i.e., a motion in the plane normal to Fe must take place. In other words, in a suspension
with a horizontal and vertical inhomogeneity in the particle distribution, in addition to the vertical
settling of the particles, a motion in the horizontal direction must also take place. This result,
which is a consequence of the lack of symmetry of the particle stress, suggests that a state of
uniform settling would be unstable to two-dimensional perturbations of the particle volume
fraction. Note that, if bD were only a function of the coordinate perpendicular to Fe, a motion
transversal to Fe would be induced simply by the term bD

v Fe in (78). This situation would be similar
to the well-known fact that a fluid the density of which varies in the horizontal direction cannot be
at rest in a gravitational field. The effect induced by the antisymmetric stress in an additional one,
which enters into play when bD depends on both the horizontal and vertical coordinates.
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Another interesting situation is a porous medium, for which w ¼ 0. In this case, (77) becomes
�$pm þ $ � ½leffð$um þ $uTmÞ� þ l$� $� bD

2M
1� bD

1þ bD

um

� �
� 4pln

M
um

� l
bD

ð1þ bDÞM
r2um � 1

2
lr2 bD

M
um

� �
¼ 0: ð80Þ
When the particle volume fraction is uniform, this equation simplifies to
�$pm þ l
leff

l

�
� 2

bD

ð1þ bDÞM

�
r2um � 4pln

M
um ¼ 0; ð81Þ
which, for a state of uniform flow, reduces to a relation of the Darcy form. When r2um 6¼ 0 we
recover a Brinkman equation but, interestingly, the ‘‘Brinkman viscosity’’ that appears is neither
the effective viscosity of the mixture leff , nor that of the pure fluid. As a matter of fact, as shown in
Wang and Prosperetti (2001), when all the proper terms are retained (i.e., not only those shown in
(81), but also those that cannot be calculated from the cell model), there are additional contri-
butions to the coefficient of r2um. It is well known (see e.g. Martys et al., 1994) that a persistent
difficulty in the use of the Brinkman equation is precisely related to uncertainties in the proper
effective viscosity to use in it, which is believed to differ from both leff and l. Our result may give
an explanation of this fact. Furthermore, the previous developments show that the Brinkman
equation is a consequence of assuming a spatially uniform particle distribution, which will
obviously be incorrect at a porous medium–clear fluid interface. This is precisely the situation
which motivated the original introduction of Brinkman�s equation, and the situation in which it is
most frequently applied. A comparable situation was found in the three-dimensional case (Wang
and Prosperetti, 2001). An investigation of the matter by means of methods more powerful than a
cell model and, in particular, by numerical simulation, would be valuable in shedding light on the
proper status of the Brinkman equation for a disordered medium. The results reported here form
a necessary prerequisite for this work.
8. Conclusions

We have calculated the ensemble-average velocity and pressure in a periodic suspension of
disks and, from these results, evaluated the particle stress. Unlike many other studies, we have
accounted for the possibility of a spatial non-uniformity in the system finding results in close
analogy with the corresponding ones for a suspension of spheres given in Tanksley and Prosp-
eretti (2001). As in that case, it is found that the stress acquires an antisymmetric component
induced by spatial non-uniformities even when no external couples act on the particles. General
considerations (at the end of Section 6) and a cell model (in Section 7) suggest that this anti-
symmetric component will induce, for example, a horizontal flow in the settling of a suspension
with gradients of the particle volume fraction in more than one spatial direction. For the case of a
porous medium, we have derived a Brinkman equation with an effective viscosity different both
from the effective viscosity of the effective medium and of the pure fluid.
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In an earlier paper (Marchioro et al., 1999), a definition of the pressure in an incompressible
mixture was developed on the basis of a covariance analysis of the averaged equations. Here we
have calculated explicitly the ensemble-average pressure (Section 4) and, just as in the three-
dimensional case (Tanksley and Prosperetti, 2001), we have found results in perfect agreement
with the expression derived by formal means in that work. The issue is non-trivial as, in an
averaged equations formulation, the mean pressure is to be found by solving the equations rather
than by a closure rule.

Turning the present general results into an explicit closed-form model will require extensive
numerical computations parallel to those presented in Marchioro et al. (2000, 2001) and Wang
and Prosperetti (2001) for the analogous case of a suspension of spheres; this work is currently
under way. In the meantime, for purposes of illustration, we have used the general formulation to
develop a simple cell model which is suggestive of possible features in the structure of a complete
closed formulation.

The hypothesis of Stokes flow that was made in the derivation only concerns the local flow
affecting the particles. Thus, the present result for the stress tensor can also be used in situations in
which the Reynolds number of the average flow is not small.
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Appendix A. The Lamb solution for disks

Following the same argument as in Lamb (1932), we decompose the solution of the Stokes
equation (25) into two parts, v ¼ vp þ vh, where both fields are divergenceless and
�$� $� vp ¼ $~qq; �$� $� vh ¼ 0: ðA:1Þ
From the second of these relations it follows that, for some function v, $� vh ¼ $v but, in two
dimensions, $� vh only has a z component and, again due to the dimensionality, v cannot depend
on z. Hence, unlike the spherical case, here we have v ¼ 0 and $� vh ¼ 0, from which we deduce
that vh ¼ $/ with r2/ ¼ 0. We write
/ ¼ m
X1
�1

/n; ðA:2Þ
where
/n ¼ snðUn cos nhþ eUUn sin nhÞ: ðA:3Þ
Clearly U0 can be taken to vanish without loss of generality. In writing / in the form (A.2), we
discard a term proportional to log s (i.e., a two-dimensional source), which is found to vanish
from the boundary condition at the particle surface.
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Upon taking the divergence of the first of (A.1) one finds r2~qq ¼ 0, from which ~qq can be written
in the earlier form (29). The first of (A.1) can then be solved to find
vp ¼ m
2a

X1
�1

n 6¼0;�1

nþ 2

2nðnþ 1Þ s
2$sqan

�
8>>>>><>>>>>:

� 1

nþ 1

r

a
qan

�
� s2ðlog sþ 1Þ$sqa�1 � ð2 log sþ 1Þ r

a
qa�1

9>>>>>=>>>>>;
þXa � rþ m

2a
Qa

1s 1

�
� 1

s2

�
eh: ðA:4Þ
The various constants appearing in these expansions are related by the boundary condition (43)
on the particle surface. One finds the following relations:
Pn ¼ ðnþ 1ÞP�n � 4nðnþ 1ÞU�n; ePPn ¼ �ðnþ 1ÞePP�n þ 4nðnþ 1ÞeUU�n; ðA:5Þ

Un ¼ ðnþ 1ÞU�n �
1

4

n
n� 1

ð1� dn1ÞP�n þ
a
m
wy

�
� 1

4
P�1

�
dn1 �

a2

2m
cxxdn2; ðA:6Þ

eUUn ¼ �ðnþ 1ÞeUU�n þ
1

4

n
n� 1

ð1� dn1ÞePP�n þ
a
m
wy

�
þ 1

4
ePP�1

�
dn1 �

a2

2m
cxydn2: ðA:7Þ
From these results it easy to derive (57) while, for the stresslet (61), we find
a2$r$rðs4q�2Þ ¼ 2
P�2 �ePP2

�ePP�2 �P�2

� �
: ðA:8Þ
In a similar way, the multipoles appearing in Eqs. (54)–(56) can all be expressed in terms of the
coefficients in the expansions (29) and (A.2).
Appendix B. Averaging

The functions La
k (cf. Eq. (13)) which arise in the calculation are combinations of terms with the

generic structure Fð�ikÞRa, where F is independent of a and Ra is independent of k. According
to (8), (10), and (12), in order to calculate ensemble averages over the continuous phase, we thus
need to evaluate quantities of the form
fk ¼
1

N !

Z
dCNPðNÞ 1

V

XN
a¼1

expðik � yaÞFð�ikÞRa; ðB:1Þ
which can be written as
fk expð�ik � xÞ ¼ Fð$Þ expð�ik � xÞ 1

N !

Z
dCNP ðNÞ 1

V

XN
a¼1

expðik � yaÞRa; ðB:2Þ
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where Fð$Þ is simply obtained from Fð�ikÞ by substituting the operator r in place of �ik.
Furthermore
1

N !

Z
dCNP ðNÞ 1

V

XN
a¼1

expðik � yaÞRa

¼ 1

V

Z
d2x0 expðik � x0Þ 1

N !

Z
dCNP ðNÞ

XN
a¼1

dð2Þðx0 � yaÞRa; ðB:3Þ
will be recognized as ðnRÞk, the k-Fourier coefficient of nR, where R is the particle average of
Ra defined in (34). Thus
X

k6¼0

fk expð�ik � xÞ ¼ Fð$Þ
X
k6¼0

expð�ik � xÞðnRÞk: ðB:4Þ
But the summation in the right-hand side reconstructs the function nðxÞRðxÞ, except for its mean
value ðnRÞ0, the Fourier coefficient corresponding to k ¼ 0, so that, from (5), we may write
bCðxÞhf iðxÞ ¼ f0 þFð$Þ nðxÞRðxÞ
	

� ðnRÞ0


: ðB:5Þ
Similarly, upon substituting (14) into (7), we find that
f0 ¼
1

N !

Z
dCNP ðNÞ 1

V

XN
a¼1

La
0 ¼ ðnL0Þ0; ðB:6Þ
is just the average of nðxÞL0ðxÞ over the cell; ðnRÞ0 is given by the same integral with Ra in place
of La

0.
Appendix C. The operators Sl

Consider the quantity
T1ðxÞ ¼
Z
r6 a

d2rf ðxþ rÞ; ðC:1Þ
where the function f is periodic in the unit cell and is such that the integral exists. Upon
expanding f in a Fourier series one finds
T1ðxÞ ¼ v
X
k

fk expð�ik � xÞS1ð�k2a2Þ; ðC:2Þ
where, for l ¼ 1; 2; . . .,
Slð�z2Þ ¼ 2

z

� �l

JlðzÞ ¼
X1
n¼0

1

n!ðlþ nÞ!

�
� 1

4
z2
�n

; ðC:3Þ
with Jl the Bessel function of the first kind. The same argument leading from (B.1) to (B.2) then
shows that
T1ðxÞ ¼ vS1ðf Þ; ðC:4Þ
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with S1 defined by (36). In particular, with f ¼ n, this relation proves (37); furthermore,
S2 ¼
1

2
þ 1

24
a2r2 þ � � � ðC:5Þ
In a similar manner it may be proven that, e.g.,
Z
jrj6 a

d2rrf ðxþ rÞ ¼ va2

2
$S2ðf Þ; ðC:6ÞZ

jrj6 a
d2rrrf ðxþ rÞ ¼ av

2
IS2ðf Þ
�

þ 1

2
a2$$S3ðf Þ

�
; ðC:7ÞZ

r¼a
dSf ðxþ rÞ ¼ 2paS0ðf Þ; ðC:8ÞZ

r¼a
dSrf ðxþ rÞ ¼ va$S1ðf Þ; ðC:9Þ
and so forth.
Appendix D. Average pressure and velocities

The calculation of the average pressure requires three separate steps: the calculation of hP1i,
that of h~qqi, and that of the contribution of the term containing C in (27). For the first one,
according to (4) and (24), one needs to evaluate
bC

XN
a¼1

fa

* +
¼ 1

N !

Z
dCNP ðNÞ

XN
a¼1

fa � 1

N !

Z
dCNP ðNÞv

XN
a¼1

fa: ðD:1Þ
It is easy to show that the first term evaluates to (35), while the second one equals
Z
r6 a

d2ynðyÞ �ffðyÞ
h

þ ðN � 1Þ~ffðyÞ
i
; ðD:2Þ
in which
~ffðyÞ ¼ 1

ðN � 1Þ!

Z
d3y2

Z
dCN�2PðN � 1 j yÞfð2Þðy; y2;N � 2Þ; ðD:3Þ
where P ðN � 1 j yÞ is the conditional probability for a configuration of N � 1 particles, given that
the first one occupies the position y. With F ¼ �ff þ ðN � 1Þ~ff, by (C.4), we thus have
bCx �
XN
a¼1

fa

* +
¼ x � ½N�ff �S1ðvnðxÞFðxÞÞ�: ðD:4Þ
The calculation for the contribution of the term containing C in (27) gives
N
V

S1ðvnx �FÞ
�

� 1

2
a2S2$ � ðvnFÞ

�
¼ N

V
x �S1ðvnFÞ; ðD:5Þ
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the equality of the two members of this equation is a simple consequence of the definition (36)
of the operators Sl. The combination of (D.4) and (D.5) thus gives the last term in (32).

We now turn to the calculation of h~qqi. For this quantity, with the polar axis chosen in the
direction of the vector k, the integral La

k defined in (13) may be written as
La
k ¼

1

k2

Z 2p

0

dh ~qqðs; hÞz o
oz

�
� o

os
~qqðs; hÞ

�
s¼1

expðiz cos hÞ; ðD:6Þ
where s ¼ r=a, z ¼ ka. Upon recalling that
Z p

�p
dh expðiz cos hÞ cos nh ¼ 2pinJnðzÞ;

Z p

�p
dh expðiz cos hÞ sin nh ¼ 0; ðD:7Þ
one finds
La
k ¼

2pm
z

"
� J1ðzÞP a

0 þ
X1
n¼1

in
2n
z
JnðzÞP a

�n

�
� Jnþ1ðzÞðP a

n þ P a
�nÞ
�#

: ðD:8Þ
But it is easy to verify from (29) and (30) that
P a
l ¼ al

l!
olxq

a
l ¼

ðia2Þl

l!zl
ð�ik � $Þlqal ; ðD:9Þ

P a
�l ¼

al

l!
olxðs2lqa�lÞ ¼

ðia2Þl

l!zl
ð�ik � $Þlðs2lqa�lÞ; ðD:10Þ
so that (D.8) can be written in the coordinate-free form
La
k ¼ pm

(
� S1P a

0 þ
X1
l¼1

1

l!

�
� a2

2

�l

ð � ik�Þl 4l
z2
Sl$

ðlÞ
r ðs2lqa�lÞ

�
� Slþ1$

ðlÞ
r ðqal þ s2lqa�lÞ

�)
;

ðD:11Þ

where Slð�z2Þ is given by (C.3). The relevant solution of (16) near the generic particle is readily
found and the result for La

0 is
La
0 ¼ �pmP a

0 : ðD:12Þ

Upon using (B.5) and (B.6), we then find
bClh~qqi ¼ � lm
a2

½ðnv�qq0Þ0 þS1ðnv�qq0 � ðnv�qq0Þ0Þ� þ vml
X1
l¼1

1

l!

�
� a2

2

�l

Slþ1ð$�ÞðlÞ

�
h
n$ðlÞ

r ðqal þ s2lq�lÞ
i
þ 2pmðr2Þ�1

X1
l¼1

1

ðl� 1Þ!

�
� a2

2

�l�1

Slð$�ÞðlÞ
h
n$ðlÞ

r ðs2lq�lÞ
i
:

ðD:13Þ

In writing this relation we have dropped the constant terms analogous to ðnRÞ0 in (B.5). Indeed,
in the first summation, all terms are differentiated at least once. As for the second summation,
we note that from (C.4), for example,
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S1$ �
�
n$rðs2~qq�1Þ

�
¼ 1

v

Z
r¼a

dSr � $rðs2~qq�1Þ; ðD:14Þ
from which it is evident that the constant part of $rðs2~qq�1Þ (which is what would be removed by
subtracting the constant term) gives no contribution to the integral anyway; an analogous
argument is applicable to the other terms. Finally, from the definition (31), the operatorS1 acting
on a constant equals 1 so that the first and third terms in the right-hand side cancel and the result
(32) given in the text follows.

Turning now to the disperse-phase velocity, we recall the fact, noted in Section 5, that uD �U1
is periodic and harmonic and, therefore, its average can be calculated as in (12) and (13). One
readily finds
La
k ¼

2v
z

J1ðzÞwa

�
þ ia2

J2ðzÞ
z

X� kþ i
J2ðzÞ
z

a2c � k
�
; ðD:15Þ

La
0 ¼ vwa; ðD:16Þ
from which (49) follows directly via (B.5).
For the continuous-phase velocity one has
La
k ¼ � 2v

z
J1ðzÞwa

�
þ ia2

J2ðzÞ
z

Xa � kþ i
J2ðzÞ
z

a2c � k
�
� 2vmi

az2
J1ðzÞQa

1 þWa; ðD:17Þ
where Wa is a vector whose x-component (along k) vanishes, while the y component equals:
W a
y ¼ 2pma

z2
X1
l¼1

il�1l 4ðl
�

þ 1ÞJlþ1ðzÞeUUa
�l � Jlþ1ðzÞ

�
þ 2

z
JlðzÞ

�ePP a
�l

�
: ðD:18Þ
We may account for this structure by introducing vectors eUUa
�l ¼ ð0; eUUa

�lÞ and ePPa
�l ¼ ð0; ePP a

�lÞ and
noting that they may be expressed as
eUU�l ¼ �ðia2Þl�1a
l!

ð�ik � $Þl�1

zl�1
I

�
� kk

k2

�
� $rðs2l/�lÞ; ðD:19Þ
where I is the identity tensor. In a similar fashion
ePP�l ¼ �ðia2Þl�1a
l!

ð�ik � $Þl�1

zl�1
I

�
� kk

k2

�
� $rðs2lp�lÞ: ðD:20Þ
With this step, proceeding as before, we recover the result (52) given in the text.
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